迈畅咖啡网

首页 - 速溶咖啡 - 咖啡烘焙过程中发生的基本化学反应

咖啡烘焙过程中发生的基本化学反应

2024-11-18 速溶咖啡 0

在烘焙过程中发生了很多热与化学反应:去碳酸基,奎宁酸的脱水,细分,异构化,聚合,以及复杂的糖反应(焦糖化)。主要的热反应的组件有:单糖和蔗糖、绿原酸、流离氨基酸,以及葫芦巴酰胺。多糖中的aravinose和calactose都被转移,基本的硫化处理包含了羟氨酸分解。碳水化合物同时被聚合及分解,视烘焙的程度,20-30%的多糖会被分解,释放出热不稳定的单糖。 蔗糖: D-葡萄糖和D- fructosyl 各一半构成的双糖 蔗糖是咖啡中主要的糖。纯结晶蔗糖的熔点是320-392华氏度(160-200摄氏度),公认的熔点是370华氏度(187.8摄氏度)。退化的干蔗糖的熔点可以低至194华氏度(90摄氏度),并随着脱水和浓缩,糖开始成糖苷结合物。 在338和392华氏度(170和200摄氏度)之间,焦糖化反应开始。正是在这一点上,水和二氧化碳破裂,由此造成的出气造成一爆。这些都是化学反应,发生在大约356华氏度(180摄氏度),这是放热反应。有件非常重要的事是,一旦焦糖化反应开始,咖啡不能放热(散热),否则咖啡的杯中表现会尝起来有"烤"(baked)的味道。一个可能的解释是, 正在加热的咖啡豆子放热,会中断长聚合链,并使得断掉的长链连接到成份。蔗糖和后来转化成的成份,或是焦糖化反应,都由水,氨,以及proteinatious物质的存在而决定。重度的烘焙会比轻度的烘焙表现出更高程度的焦糖化反应。焦糖化反应的程度是一个评量烘焙的很好的标准,而且分辨率很高。 纤维素: 无水的长线性聚合物(A Long Linear Polymer of Anhydroglucose Units) 纤维素是咖啡细胞壁的主要纤维。 这是局部有序(结晶),局部无序(无定形/非晶)。非晶区域很容易受影响并易于起反应,但结晶区域紧密堆积并且氢键结合,几乎是完全行不受影响的。天然纤维素,或者叫纤维素I,当被加热时被转换成同质异像体纤维素III和纤维素IV。咖啡的结构是一个很发达的矩阵,这提高了质量的一致性,并可以在烘焙的过程中有助于热量的均匀传播。纤维素在咖啡中的存在形式为嵌入在木质纤维素中(一种无定形矩阵,包含半纤维素和含纤维素的木质素),这些物质组成了矩阵单元壁(细胞壁)。半纤维素酶(hemicellusloses)是由分岔糖及糖醛酸组成的多糖。木质素是特别值得注意的,因为它是一个高度聚合的芳香物质。当分布温度超过446华氏度(230摄氏度),且豆子表面温度超过536华氏度时(280摄氏度),细胞壁发生了严重的损坏。(发生这一变化)实际的温度会因要素的不同而改变。与深度烘焙有关的第二爆,就是这个矩阵的破裂,可能同时伴随着木质素和其他芳香烃的挥发。在受控制的焙烧条件下,豆子的环境温度绝不应超过536华氏度(280摄氏度)。一个稍宽些的安全界线应该将最高环境温度限制为520华氏度(271.1摄氏度)。这些温度限制可以尽量减少对细胞矩阵的破坏,并能提高杯中表现的复杂性,提高焙烧产量以及产品货架生命周期。 葫芦巴酰胺(Trigonelline): 咖啡中发现的一个含氮基(A Nitrogenous Base) 葫芦巴酰胺是百分之百溶于水的,所以最后会出现在(咖啡)杯中。胡芦巴酰胺产生过度苦味的最主要的成份。当豆子温度在445华氏度时(229.4摄氏度),大约85%的葫芦巴酰胺会退化。豆子温度在这个温度点时,豆子表现为中等深度的烘焙。对于更浅些的的烘焙会有更多的葫芦巴酰胺,因此会(尝到)苦味,但是在这个温度时被焦糖化的糖也比较少。焦糖化的糖在杯中表现比未焦糖化的糖甜度要差些,所以当适当地烘焙时,这两种成份可以互相衬托,使味道更好。纯结晶的葫芦巴酰胺的熔点在424华氏度(217.8摄氏度),葫芦巴酰胺在大约378华氏度(192.2摄氏度)时开始退化。葫芦巴酰胺的退化是确定最佳反应比率的关键控制标志之一。 奎尼酸:羧基酸组群的会员 奎尼酸的纯结晶体的熔解从325华氏度(162.8摄氏度)开始,远低于与烘烤环境的温度。奎尼酸是水溶性的,表现为些微的酸溜溜(不是发酵豆的那种坏味道)和锐利的性质,它赋予了杯中表现以更多的特性和复杂度。令人惊讶的是,它也给杯测的回味带来了干净的口感(it adds cleanness to the finish of the cup as well)。在烘焙温度下它是一个稳定的化合物。 烟酸: 羧基酸组群的会员 烟酸的纯结晶体的熔解从457华氏度(236.1摄氏度)开始。天然烟酸与多糖纤维素结构在一起。在烘焙过程中烟酸衍生出可溶性的形式。不论任何程度的烘焙,高等级的烟酸总是与好的杯中表现相关。因为这是100%可溶性的,它终将呈现在杯中。烟酸有助于良好风味的酸度以及干净的回味(clean finish)。 它的衍生率是一个关键控制标志,可以用来确定最佳反应率的温度,以及化学传播率(chemistry propagation rates)。此外,熔解的烟酸与组份的交互作用可以显著增加深烘焙咖啡(杯中表现)的亮度。 环境温度 烘焙环境的温度决定了特定类型的化学反应的发生。有一段温度窗,(在这个窗内的烘焙)会产生良好风味的反应,并产生理想的杯中表现。温度值超出这个窗口会对经典的杯中表现呈负面影响。即使温度的值在窗口内,不同的温度仍会改变杯中表现的特性,这就给烘焙师以空间来开发个人的风格或是某种想要的风格,或是驯服某种咖啡中粗矿的个性,同时仍能把相关的质量控制到最佳。 系统能量 在任何给定的环境温度下,能源量(BTU)和烘焙系统的传输效率将决定特定的化学变化发生的速率。能量和转输率都较高的话,反应会进行得较快。反应速率也有一个窗口,在此窗内可以最优化杯中表现的质量。这被称为最佳反应速率,简称为 BRR。 最佳反应速率 (BRR) 最佳的杯中特征产出于这样的时间:葫芦巴酰胺降解与烟酸衍生的比率保持线性。这个反应速率的控制模型是时间/温度/能量的关系。环境温度(ET)确立了所期望的化学反应发生的高温分解区,而能量值(BTU)和系统传递效率(STE)确定了反应传播的速率,以及烟酸衍生与胡芦巴酰胺退化的比例的线性。因为绿豆子的密度变化很大,在任何给定的ET / BTU / STE格式下,反应的分布会有所不同。对于高密度的豆子,需要较长的时间来得到有可比性的一致性。在烘焙的这一阶段,监测豆子温度是一个很好的让反应分布类似的方法。理想的环境温度,ET,为了得到最好的反应比,BRR,是从401~424华氏度(205~218摄氏度),405华氏度(207.2摄氏度)是默认值。所需的BTU由该系统的传输效率,或者说,把能量传输给豆子的能力,来确定。 最高环境温度 (MET) 建立理想烘焙的热环境协议是一个平衡点。尽管期望是能够在反应的目标达到前一直维持BRR温度及能量水平,BRR温度会远高于蔗糖的焦糖化温度。因为许多烘焙系统使用简单的温度调节机理,这些系统会表现出热滞后效应,所以一定要很小心,不要让咖啡放热。另外,限制最高环境温度,MET,也是很重要的。如前所述,保持纤维素矩阵的结构完整性的是十分重要的。较低的温度可减少成分的表面蒸发,使那种将成分吸到表面并挥发掉的毛细管现象降到最小。液压作用,一个与豆子温度直接相关的内部压力的作用,已经在起作用了。通过限制的最高温度,损失会被最小化,咖啡的精华会被保留。因此, MET不应超过520华氏度(271.1摄氏度)。这个烘焙系统基于MET的值,即实际最终的豆子,或是说下豆温度,和烘焙的程度相关。

标签: 速溶咖啡如何冲泡全国第一名减肥药最快的女人喝咖啡的十大好处女士喝咖啡有好处吗冲咖啡粉的正确方法

网站分类